Abstract
Fertilization depth adjustment is a well-known strategy for increasing crop yields. However, the precise mechanism associated with this strategy remains unclear, particularly regarding increased nutrient absorption and utilization, and maize seed production. Thus, we examined the effects of different nitrogen fertilization depths [0 cm (L0), 5 cm (L5), 15 cm (L15), and 25 cm (L25)] on maize crop growth, nutrient uptake and distribution, fertilizer use efficiency, grain yield, and economic benefits in a field study conducted for two years (2021–2022) in Hexi Oasis Irrigation Area, northwest China. The optimal nitrogen fertilization depth was crucial for enhancing growth, dry matter production, and the grain yield. In particular, compared with L15 and L5, L25 significantly (P < 0.05) increased the average plant height by 5.00 % and 10.36 %, respectively, and dry matter accumulation by 2.65 % and 3.39 %. Furthermore, compared with L5 and L15, the total nutrient uptake was 19.17 % (P < 0.05) and 7.11 % higher under L25, respectively, and the average grain nutrient uptake was 23.33 % higher (P < 0.05). Moreover, L25 significantly increased the N, P, and K fertilizer utilization efficiency compared with L5 and L15, and the highest dry matter to grain translocation occurred under L25. Structural equation modeling confirmed that deep nitrogen fertilization promoted growth, dry matter translocation to grain, and the uptake and distribution of nutrients in maize plants to significantly improve the fertilizer use efficiency and yield. These findings are important for guiding fertilization management practices to increase maize seed production in regions with similar climate conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.