Abstract

Phosphorus (P) recovery from human manure (HM) is critical for food production security. For the first time, a one-step hydrothermal carbonation (HTC) treatment of HM was proposed in this study for the targeted high-bioavailable P recovery from P-rich hydrochars (PHCs) for direct soil application. Furthermore, the mechanism for the transformation of P speciation in the derived PHCs was also studied at the molecular level. A high portion of P (80.1∼89.3%) was retained in the solid phase after HTC treatment (120∼240°C) due to high metal contents. The decomposition of organophosphorus (OP) into high-bioavailable orthophosphate (Ortho-P) was accelerated when the HTC temperature was increased, reaching ∼97.1% at 210°C. In addition, due to the high content of Ca (40.45±2.37 g/kg) in HM, the HTC process promoted the conversion of low-bioavailable non-apatite inorganic (NAIP) into high-bioavailable apatite inorganic P (AP). In pot experiments with pea seedling growth, the application of newly obtained PHCs significantly promoted plant growth, including average wet/dry weight and plant height. Producing 1 ton of PHCs (210°C) with the same effective P content as agricultural-type calcium superphosphate could result in a net return of $58.69. More importantly, this pathway for P recovery is predicted to meet ∼38% of the current agricultural demand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.