Abstract
This study implemented biochars produced from two arid agricultural byproducts, date palm leaves and pistachio shells, at pyrolysis temperatures from 400 to 800 °C to remove trimethoprim, sulfamethoxazole and sulfapyridine antibiotics from mixed solutions. By altering pyrolysis temperature and feedstock, produced biochars yielded a range of physicochemical properties resulting in distinct antibiotic adsorption. Antibiotic adsorption capacity generally decreased with increasing pyrolysis temperature, while adsorption affinities were temperature independent for trimethoprim and increased with pyrolysis temperature for sulfamethoxazole and sulfapyridine. Correlation against biochar properties suggested cation exchange capacity and functional group composition related well to adsorption capacity and polarity/hydrophobicity was linked to adsorption affinities. Antibiotic removal efficiencies by biochars from both feedstocks compared favorably against previous reports, with up to 97.6, 98.1 and 99.5 % of trimethoprim, sulfamethoxazole and sulfapyridine removed, respectively. This work relates biochar production conditions to properties and subsequent antibiotic adsorption, demonstrating application of these materials for removing antibiotics from wastewater.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have