Abstract

We introduce a new method for optimizing minimal energy conical intersections (MECIs), based on a sequential penalty constrained optimization in conjunction with a smoothing function. The method is applied to optimize MECI geometries using the multistate formulation of second-order multireference perturbation theory (MS-CASPT2). Resulting geometries and energetics for conjugated molecules including ethylene, butadiene, stilbene, and the green fluorescent protein chromophore are compared with state-averaged complete active space self-consistent field (SA-CASSCF) and, where possible, benchmark multireference single- and double-excitation configuration interaction (MRSDCI) optimizations. Finally, we introduce the idea of "minimal distance conical intersections", which are points on the intersection seam that lie closest to some specified geometry such as the Franck-Condon point or a local minimum on the excited state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.