Abstract
Cellular immunotherapy has emerged as one of the most potent approaches to treating cancer patients. Adoptive transfer of chimeric antigen receptor (CAR) T cells as well as the use of haploidentical natural killer (NK) cells can induce remission in patients with lymphoma and leukemia. Although the use of CAR T cells has been established, this approach is currently limited for wider use by the risk of severe adverse events, including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Moreover, the risk of triggering graft vs host reactions in settings of allogeneic T cell infusion limits the use to autologous CAR T cells if advanced CRISPR engineering is not applied. In contrast, NK cell-based cancer immunotherapy has emerged as a safe approach even in allogeneic settings. However, efficient transduction of primary blood NK cells with vesicular stomatitis virus G glycoprotein (VSV-G) pseudotyped lentivirus commonly used for T cell modification remains challenging. This article presents a detailed method that significantly enhances the transduction efficiency of NK cells by utilizing a short-term culture in cytokine-supplemented medium. It also encompasses the preparation of high-titer and high-quality lentiviral particles for optimal NK cell transduction. Overall, this protocol details the step-by-step culture of NK cells in cytokine-supplemented medium, their transduction with VSV-G lentiviral vectors, and subsequent expansion for functional assays. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Isolation of NK cells from human peripheral blood mononuclear cells (PBMCs) Basic Protocol 2: NK cell expansion and transduction with lentivirus for generating CAR-NK cells Support Protocol 1: Plasmid amplification Support Protocol 2: Lentivirus preparation Support Protocol 3: Lentivirus titration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.