Abstract

Brain tumor classification using medical images is crucial for identification and therapy. However, brain tumors are complex and vary, making grouping them difficult. This work demonstrates a novel transfer learning method for brain tumor classification. We employ trained Convolutional Neural Networks (CNNs) models and data enrichment approaches to extract meaningful information from medical images. We want to fine-tune the models built on our dataset to uncover hierarchical patterns that distinguish tumor types. Through data enrichment, the training sample becomes more diverse and richer, making the model more generic and robust. Our team's extensive testing and research have shown that the suggested procedure can identify brain tumors. Our machine-learning approach performs better than others in terms of accuracy, sensitivity, specificity, and precision. Our technique improves brain tumor categorization and assures accurate clinical diagnosis. Automated testing systems are one way for physicians to assist patients in selecting the best course of treatment. Researchers may improve classification performance by incorporating modern imaging technology or topic-specific data. The Internet of Things, or IoT, is helping to drive the development of complex real-time data collection, processing, and sharing systems. These technological advancements have transformed medical imaging. This graphic depicts a cutting-edge transfer learning system that may be able to identify brain cancer from medical photos. This technology has the potential to enhance data collection and processing via the Internet of Things. Data augmentation and pre-trained convolutional neural networks may help to extract interpretable medical images. The Internet of Things improved the model's flexibility, resilience, and utility. We achieved this by expanding the training data set. Rapid categorization advancements have made clinical diagnosis more efficient. Classification, deep learning, medical imaging, machine learning, transfer learning, tumor detection, and image analysis all relate to this topic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.