Abstract

BACKGROUND CONTEXTAnterior column realignment (ACR) is a powerful but destabilizing minimally invasive technique for sagittal deformity correction. Optimal biomechanical design of the ACR construct is unknown. PURPOSEEvaluate the effect of ACR design on radiographic lordosis, range of motion (ROM) stability, and rod strain (RS) in a cadaveric model. STUDY DESIGN/SETTINGCadaveric biomechanical study. PATIENT SAMPLESeven fresh-frozen lumbar spine cadaveric specimens (T12–sacrum) underwent ACR at L3–L4 with a 30° implant. OUTCOME MEASURESPrimary outcome measure of interest was maximum segmental lordosis measured using lateral radiograph. Secondary outcomes were ROM stability and posterior RS at L3/4. METHODSEffect of grade 1 and grade 2 osteotomies with single-screw anterolateral fixation (1XLP) or 2-screw anterolateral fixation (2XLP) on lordosis was determined radiographically. Nondestructive flexibility tests were used to assess ROM and RS at L3–L4 in flexion, extension, lateral bending, and axial rotation. Conditions included (1) intact, (2) pedicle screw fixation and 2 rods (2R), (3) ACR+1XLP with 2R, (4) ACR+2XLP+2R, (5) ACR+1XLP with 4 rods (4R) (+4R), and (6) ACR+2XLP+4R. RESULTSSegmental lordosis was similar between ACR+1XLP and ACR+2XLP (p>.28). ACR+1XLP+2R was significantly less stable than all other conditions in flexion, extension, and axial rotation (p<.014); however, adding an extra screw improved stability to levels equal to 4R conditions (p>.36). Adding 4R to ACR+1XLP reduced RS in all directions of loading (p<.048), whereas adding a second screw did not (p>.12). There was no difference in strain between ACR+1XLP+4R and ACR+2XLP+4R (p>.55). CONCLUSIONSFor maximum stability, ACR constructs should contain either fixation into both vertebral bodies (2XLP) or accessory rods (4R). 2XLP can be used without compromising the maximal achievable lordosis but does not provide the same RS reduction as 4R. CLINICAL SIGNIFICANCEACR is a highly destabilizing technique that is increasingly being used for minimally invasive deformity correction. These biomechanical data will help clinicians optimize ACR construct design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call