Abstract
AbstractThis study uses a three-layer backpropagation neural network combined with particle swarm optimization to control the foamed bitumen in cold recycling technology. The foaming process of bitumen is non-linear and depends on dynamic temperature. By developing a neural network model, this study effectively captures the complex relationships between temperature, water content, air pressure, and the expansion ratio and half-life of foamed bitumen. The integration of particle swarm optimization enhances the accuracy and convergence of the neural network model by optimizing the initial weights. This optimization process improves the model's ability to predict and control the quality of foamed bitumen accurately. It serves as a valuable tool for the rapid development of high-quality cold asphalt design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.