Abstract
AbstractThis study uses a three-layer backpropagation neural network combined with particle swarm optimization to control the foamed bitumen in cold recycling technology. The foaming process of bitumen is non-linear and depends on dynamic temperature. By developing a neural network model, this study effectively captures the complex relationships between temperature, water content, air pressure, and the expansion ratio and half-life of foamed bitumen. The integration of particle swarm optimization enhances the accuracy and convergence of the neural network model by optimizing the initial weights. This optimization process improves the model's ability to predict and control the quality of foamed bitumen accurately. It serves as a valuable tool for the rapid development of high-quality cold asphalt design.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have