Abstract

The increasing graphite demand for energy storage confronts a significant hurdle: a dwindling supply of high-quality precursors. This study introduces a simple additive upgradation strategy, exploring the potential of waste plastics and lower-quality aliphatic pitches to improve scant high-aromaticity pitch precursors by providing donatable hydrogen. The results indicate not only that high-quality aromatic pitches can accommodate waste plastics and lower-quality aliphatic pitches but also that their synergistic composition leads to improved graphitic quality and a uniform crystalline phase in the heat-treated products. Optimal aromaticity values have been investigated through a graphitization study of diverse pitch samples. Additionally, the effectiveness of quinoline insoluble removal as a subtractive strategy on crystallite sizes after graphitization was investigated, and remarkable improvements were observed in the crystallite sizes of the graphitized product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.