Abstract

Key operating variables to predict the necessary scour air flowrate in full-scale Membrane Bioreactor (MBR) systems are identified, aiming to optimize energy consumption while avoiding the limiting condition (i.e., rapid increasing total resistance). The resulting metric, referred to here as the K value, was derived by balancing hydrodynamic conditions between the particle deposit rate imposed by permeate flux normalized by fouling condition and its removal by shear stress induced from air scouring. The metric includes air scouring flow, permeate flow, Mixed Liquor Suspended Solids (MLSS) concentration, Mixed Liquor (ML) viscosity, membrane packing density, and total resistance. Long-term (year-long) data from two full-scale MBR plants were analyzed. The value of K corresponding to limiting operational operation and referred to as the limiting K value, KLim, is estimated by detecting the occurrence of threshold limiting flux from the data stream and calculating the resulting value for K. Then, using KLim, the minimum required specific air demand per permeate (SADp,Crit) is calculated, indicating a potential reduction of over half the air scouring energy in typical operational conditions. The results from this data driven analysis suggest the feasibility of employing KLim to predict the adequate scour air flowrate in terms of dynamically varying operational conditions. This approach will lead to the development of energy-efficient algorithms, significantly reducing scour air energy consumption in the full-scale MBR system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.