Abstract
A 2.45 GHz microwave ion source coupled with a magnesium charge exchange canal (C × C) has been successfully adapted to a large acceptance radiocarbon accelerator mass spectrometry system at the National Ocean Sciences Accelerator Mass Spectrometry (AMS) Facility, Woods Hole Oceanographic Institution. CO(2) samples from various preparation sources are injected into the source through a glass capillary at 370 μl∕min. Routine system parameters are about 120-140 μA of negative (12)C current after the C × C, leading to about 400 (14)C counts per second for a modern sample and implying a system efficiency of 0.2%. While these parameters already allow us to perform high-quality AMS analyses on large samples, we are working on ways to improve the output of the ion source regarding emittance and efficiency. Modeling calculations suggest modifications in the extraction triode geometry, shape, and size of the plasma chamber could improve emittance and, hence, ion transport efficiency. Results of experimental tests of these modifications are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.