Abstract
This research presents an enhanced methodology for diagnosing bearing faults using Variational Mode Decomposition (VMD) based on L-Kurtosis analysis. The proposed method focuses on selecting optimal parameters for VMD to extract the mode containing the most information related to the fault. The selection of these parameters is based on comparing the energy ratio of each mode and the absolute difference in L-Kurtosis between the Intrinsic Mode Function (IMF) with the highest energy and the original signal. The extracted mode is further refined using a specified kurtosis rate threshold to ensure the most relevant significant modes are captured. The proposed methodology was tested using real fault data from the CWRU, XJTU-SY, and a real-world wind turbine dataset related to electric motors and wind turbine systems. The results demonstrated high accuracy in fault detection compared to other methods such as the Gini Index, correlation, and traditional decomposition techniques like EMD. Furthermore, due to the simple computational nature of the improved VMD method, it is faster and more efficient compared to methods that rely on complex calculations or frequency band analysis, making it suitable for applications requiring real-time, reliable fault diagnosis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.