Abstract
3D-IC has been increasingly adopted by the industry owing to its promise of higher device speed and package bandwidth, improved power consumption, reduced form factor, and lower cost for important applications over a wide range of industrial segments including image sensors, logic-memory and logic-logic integration, MEMS, integrated optical interposers and LEDs. This presentation is a systematic study of multiple experimental factors affecting the electrical performance, reliability and scalability of TSVs. Electrical modeling and simulation was used to determine the key factors influencing singal transmission and return losses in TSVs at high (>1 GHz) frequencies. A variety of process modules and steps for the fabrication of through silicon vias were then systematically optimized to ensure high performance. The modules evaluated include TSV etch, TSV fill, chemical mechanical polishing (CMP), pad finish, bonding schemes, wafer thinning, via reveal, passivation, wiring and bumping. One example is the improvement of TSV profile and sidewall roughness through the optimization of DRIE parameters and wet chemical methods to reduce silicon sidewall roughness from that of a typical Bosch etch to less than 10nm which is critical for adhesion of barrier/seed layer and the final reliability of 2.5D packaging. Scalability of void-free via fill process with respect to TSV diameter and depth was addressed by using highly conformal barrier layers. Adhesion of Cu to the barrier layer was also improved upon detailed analysis to prevent delamination and improve reliability. A bottom up plating chemistry with significantly low impurity content was utilized to mitigate voids, seams and excessive overburden in the TSV. Its impact on stress and delamination issues and subsequent reliability failures was studied in details. The annealing process following TSV formation is systematically studied with varying conditions and characterized with metrology and electrical tests to investigate its effect on microstructure and material properties. The process parameters were tuned for CMP of Cu, adhesion and barrier layer without causing corrosion or delamination between adjacent layers. Process requirements for these modules in TSV process are closely related. This presentation will review the process module development in the context of their effects on the integrated TSV parameters (performance, reliability and scalability). We will also provide an in-depth discussion on process module optimization, electrical and mechanical characterization and cost reduction methodologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.