Abstract

Automation in Unmanned Aerial Systems (UAS)-based structural inspections has gained significant traction given the scale and complexity of infrastructure. A core problem in UAS-based inspection is electing an optimal flight path to achieve the mission objectives while minimizing flight time. This paper presents an effective two-stage method that guarantees coverage as a constraint to ensure damage detectability, while minimizing path length as an objective. A genetic algorithm first determines viewpoint positions, and a greedy algorithm calculates the camera poses, as opposed to directly optimizing all degrees of freedom (DOF) simultaneously. A sensitivity analysis demonstrates the range of applicability and superiority of this formulation over direct 5-DOF optimization by at least 30 % shorter path length. Applied examples, including focused and partial space inspections, are also presented, demonstrating the flexibility of the proposed method to meet real-world requirements. The results highlight the feasibility of the approach and contribute to incorporating automation into UAS-based structural inspections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.