Abstract

Background: The collagenase encoding gene col was cloned into a pP43NMK vector and amplified in Escherichia coli JM109 cells. The shuttle vector pP43NMK was used to sub-clone the col gene to obtain the vector pP43NMK-col for the expression of collagenase in Bacillus subtilis WB600. The enzyme was characterized and the composition of the expression medium and culture conditions were optimized. Methods: The expressed recombinant enzyme was purified by ammonium sulfate, ultrafiltration, and through a nickel column. The purified collagenase had an activity of 9405.54 U/mg. Results: The recombinant enzyme exhibited optimal activity at pH 9.0 and 50 °C. Catalytic efficiency of the recombinant collagenase was inhibited by Fe3+ and Cu2+, but stimulated by Co2+, Ca2+, Zn2+, and Mg2+. The optimal conditions for its growth were at pH 7.0 and 35 °C, using 15 g/L of fructose and 36 g/L of yeast powder and peptone mixture (2:1) at 260 rpm with 11% inoculation. The maximal extracellular activity of the recombinant collagenase reached 2746.7 U/mL after optimization of culture conditions, which was 2.4-fold higher than that before optimization. Conclusions: This study is a first attempt to recombinantly express collagenase in B. subtilis WB600 and optimize its expression conditions, its production conditions, and possible scale-up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.