7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1109/tnsm.2019.2894955
Copy DOIPublication Date: Jun 1, 2019 | |
Citations: 118 |
The proliferation of smart connected Internet of Things (IoT) devices is bringing tremendous challenges in meeting the performance requirement of their supported real-time applications due to their limited resources in terms of computing, storage, and battery life. In addition, the considerable amount of data they generate brings extra burden to the existing wireless network infrastructure. By enabling distributed computing and storage capabilities at the edge of the network, multi-access edge computing (MEC) serves delay sensitive, computationally intensive applications. Managing the heterogeneity of the workload generated by IoT devices, especially in terms of computing and delay requirements, while being cognizant of the cost to network operators, requires an efficient dimensioning of the MEC-enabled network infrastructure. Hence, in this paper, we study and formulate the problem of MEC resource provisioning and workload assignment for IoT services (RPWA) as a mixed integer program to jointly decide on the number and the location of edge servers and applications to deploy, in addition to the workload assignment. Given its complexity, we propose a decomposition approach to solve it which consists of decomposing RPWA into the delay aware load assignment sub-problem and the mobile edge servers dimensioning sub-problem. We analyze the effectiveness of the proposed algorithm through extensive simulations and highlight valuable performance trends and trade-offs as a function of various system parameters.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.