Abstract

The phenomena of damping enhancement and higher decay coefficient are obtained by introducing a piezoelectric transducer at the resonating unit of the metamaterial. The difference between the damping ratio of the piezo-transducer controlled and that of the equivalent uncontrolled metamaterial is termed metadamping, and thereby it is used to indicate the enhancement of energy dissipation characteristics. The optimum inductance and resistance of the impregnated piezo-transducer are computed to minimize the response of the outer mass of a unit cell by implementing [Formula: see text] optimization technique. A parametric study is conducted after applying Bloch’s theorem, and the enhancement of damping over the complete Brillouin zone is determined to get a comprehension of the metadamping phenomenon. Impregnation of the piezo-transducer at the resonating unit not only enhances the normalized bandwidth more than twice but also significantly increases the damping emergence when compared to the equivalent uncontrolled metamaterial. This envisioned the promise of high-stiff, high-damped metamaterial for enhanced transient vibration control as well as wider attenuation bandgap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.