Abstract

Abstract Experimental conditions were studied for optimized attachment of 3-aminopropyltriethoxysilane (APTES) onto amorphous, anatase and rutile titanium dioxide (TiO2) surfaces. The attachment process and extent was characterized using X-ray photoelectron spectroscopy (XPS). In particular, the effect of attachment time, silane concentration, reaction temperature and the TiO2 crystalline structure on the growth kinetics of the silane layers was studied. The measurements reveal that typically monolayers are more dense on amorphous than on crystalline TiO2. The results show that critical experimental conditions exist where APTES attachment to the TiO2 surface changes from a monolayer to a multilayer growth mode. The obtained results and parameters to produce optimized APTES layers are of a high practical relevance as APTES attachment often constitutes the initial step for organic modification of TiO2 surface with biorelevant molecules such as proteins, enzymes or growth factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.