Abstract

Diabetic Retinopathy (DR) is a critical abnormality in the retina mainly caused by diabetes. The early diagnosis of DR is essential to avoid painless blindness. The conventional DR diagnosis is manual and requires skilled Ophthalmologists. The Ophthalmologist’s analyses are subjective to inconsistency and record maintenance issues. Hence, there is a need for other DR diagnosis methods. In this paper, we proposed an AdaBoost algorithm-based ensemble classification approach to classify DR grades. The major objective of the proposed approach is an enhancement of DR classification performance by using optimized features and ensemble machine learning techniques. The proposed method classifies different grades of DR using the Meyer wavelet and retinal vessel-based features extracted from multiple regions of interest of the retina. To improve the predictive accuracy, we used a Bayesian algorithm to optimize the hyper-parameters of the proposed ensemble classifier. The proposed DR grading model was constructed and evaluated by using the MESSIDOR fundus image dataset. In evaluation experiment, the classification outcome of the proposed approach was evaluated by the confusion matrix and receiver operating characteristic (ROC) based metrics. The evaluation experiments show that the proposed approach attained 99.2% precision, 98.2% recall, 99% accuracy, and 0.99 AUC. The experimental findings also indicate that the proposed approach’s classification outcome is significantly better than that of state of art DR classification methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call