Abstract
Diabetic retinopathy (DR), a chronic disease in which the retina is damaged due to small vessel damage caused by diabetes mellitus, is one of the leading causes of vision impairment in diabetic patients. Detection of the earliest clinical sign of the advent of DR is a critical requirement for intervention and effective treatment. Ophthalmologists are trained to identify DR, based on examining specific minute changes in the eye - microaneurysms, retinal haemorrhages, macular edema and changes in the retinal blood vessels. Segmentation of microaneurysms (MA) is a critical requirement for the early diagnosis of DR and has been the primary focus of the research community over the past few years. In this work, a systematic review of existing literature is carried out to examine the diagnostic use of automated MA detection and segmentation for early DR diagnosis. We mainly focus on existing early DR diagnosis techniques to understand their strengths and weaknesses. Though early diagnosis is performed using colour fundus photography, fluorescein angiography or optical coherence tomography angiography images, our study is limited to colour fundus based techniques. The early DR diagnosis methodologies reviewed in this article can be broadly classified into classical image processing, conventional machine learning (ML), and deep learning (DL) based techniques. Though significant progress has been achieved in these three classes of early DR diagnosis, several challenges and gaps still exist, underscoring a considerable scope for the development of fully automated, user-friendly early DR diagnosis and grading systems. We discuss in detail the challenges that need to be addressed in designing such effective, efficient, and robust algorithms for early DR diagnosis systems and also the ample scope for future research in this area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods and Programs in Biomedicine Update
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.