Abstract

Triple-negative breast cancer (TNBC) presents treatment challenges due to a lack of detectable surface receptors. Natural killer (NK) cell-based adaptive immunotherapy is a promising treatment because of the characteristic anticancer effects of killing malignant cells directly by secreting cytokines and lytic granules. To maximize the cancer recognition ability of NK cells, biomaterial-mediated ex vivo cell surface engineering has been developed for sufficient cell membrane immobilization of tumor-targeting ligands via hydrophobic anchoring. In this study, we optimized amphiphilic balances of NK cell coating materials composed of CD44-targeting hyaluronic acid (HA)-poly(ethylene glycol) (PEG)-lipid to improve TNBC recognition and the anticancer effect. Changes in the modular design of our material by differentiating hydrophilic PEG length and incorporating lipid amount into HA backbones precisely regulated the amphiphilic nature of HA-PEG-lipid conjugates. The optimized biomaterial demonstrated improved anchoring into NK cell membranes and facilitating the surface presentation level of HA onto NK cell surfaces. This led to enhanced cancer targeting via increasing the formation of immune synapse, thereby augmenting the anticancer capability of NK cells specifically toward CD44-positive TNBC cells. Our approach addresses targeting ability of NK cell to solid tumors with a deficiency of surface tumor-specific antigens while offering a valuable material design strategy using amphiphilic balance in immune cell surface engineering techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.