Abstract
Membrane-less single-medium sediment microbial fuel cells (single-SMFC) can remove Cu2+ from sediment through electromigration. However, the high mass transfer resistance of the sediment and amount of oxygen at the cathode of the SMFC limit its Cu2+ removal ability. Therefore, this study used an oxygen-releasing bead (ORB) for slow oxygen release to increase oxygen at the SMFC cathode and improve the mass transfer property of the sediment. Resultantly, the copper removal efficiency of SMFC increased significantly. Response surface methodology was used to optimize the nano zero-valent iron (nZVI)-modified biochar as the catalyst to enhance the ability of the modified ORB (ORBm) to remove Cu2+ and slow release of O2. The maximum Cu2+ removal (95 %) and the slowest O2 release rate (0.41 mg O2/d·g ORBm) were obtained when the CaO2 content and ratio of nZVI-modified biochar to unmodified biochar were 0.99 g and 4.95, respectively. When the optimized ORBm was placed at the single-SMFC cathode, the voltage output and copper removal increased by 4.6 and 2.1 times, respectively, compared with the system without ORBm. This shows that the ORBm can improve the migration of Cu2+ in the sediment, providing a promising remediation method for Cu-contaminated sediments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have