Abstract

The topological structure of a dynamical network plays a pivotal part in its properties, dynamics and control. Thus, understanding and modeling the structure of a network will lead to a better knowledge of its evolutionary mechanisms and to a better cottoning on its dynamical and functional behaviors. However, in many practical situations, the topological structure of a dynamical network is usually unknown or uncertain. Thus, exploring the underlying topological structure of a dynamical network is of great value. In recent years, there has been a growing interest in structure identification of dynamical networks. As a result, various methods for identifying the network structure have been proposed. However, in most of the previous work, few of them were discussed in the perspective of optimization. In this paper, an optimization algorithm based on the projected conjugate gradient method is proposed to identify a network structure. It is straightforward and applicable to networks with or without observation noise. Furthermore, the proposed algorithm is applicable to dynamical networks with partially observed component variables for each multidimensional node, as well as small-scale networks with time-varying structures. Numerical experiments are conducted to illustrate the good performance and universality of the new algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call