Abstract

Robust optimization methods have shown practical advantages in a wide range of decision-making applications under uncertainty. Recently, their efficacy has been extended to multiperiod settings. Current approaches model uncertainty either independent of the past or in an implicit fashion by budgeting the aggregate uncertainty. In many applications, however, past realizations directly influence future uncertainties. For this class of problems, we develop a modeling framework that explicitly incorporates this dependence via connected uncertainty sets, whose parameters at each period depend on previous uncertainty realizations. To find optimal here-and-now solutions, we reformulate robust and distributionally robust constraints for popular set structures and demonstrate this modeling framework numerically on broadly applicable knapsack and portfolio-optimization problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.