Abstract

Motivated by the importance of user engagement as a crucial element in cascading leaving of users from a social network, we study identifying a largest relaxed variant of a degree-based cohesive subgraph: the maximum anchored k-core problem. Given graph [Formula: see text] and integers k and b, the maximum anchored k-core problem seeks to find a largest subset of vertices [Formula: see text] that induces a subgraph with at least [Formula: see text] vertices of degree at least k. We introduce a new integer programming (IP) formulation for the maximum anchored k-core problem and conduct a polyhedral study on the polytope of the problem. We show the linear programming relaxation of the proposed IP model is at least as strong as that of a naïve formulation. We also identify facet-defining inequalities of the IP formulation. Furthermore, we develop inequalities and fixing procedures to improve the computational performance of our IP model. We use benchmark instances to compare the computational performance of the IP model with (i) the naïve IP formulation and (ii) two existing heuristic algorithms. Our proposed IP model can optimally solve half of the benchmark instances that cannot be solved to optimality either by the naïve model or the existing heuristic approaches. Funding: This work is funded by the National Science Foundation (NSF) [Grant DMS-2318790] titled AMPS: Novel Combinatorial Optimization Techniques for Smartgrids and Power Networks. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoo.2022.0024 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.