Abstract

The solvent-gradient simulated moving bed process (SG-SMB) is the new tendency in the performance improvement if compared to the traditional isocratic solvent conditions. In such SG-SMB process the modulation of the solvent strength leads to significant increase in the purities and productivity followed by reduction in the solvent consumption. A stepwise modelling approach was utilized in the representation of the interconnected chromatographic columns of the system combined with a lumped mass transfer model between the solid and liquid phase. The influence of the solvent modifier was considered applying the Abel model which takes into account the effect of modifier volume fraction over the partition coefficient. Correlation models of the mass transfer parameters were obtained through the retention times of the solutes according to the volume fraction of modifier. The modelling and simulations were carried out and compared to the experimental SG-SMB separation unit of the amino acids Phenylalanine and Tryptophan. The simulation results showed the great potential of the proposed modelling approach in the representation of such complex systems. The simulations showed great agreement fitting the experimental data of the amino acids concentrations both at the extract as well as at the raffinate. A new optimization strategy was proposed in the determination of the best operating conditions which uses the phi-plot concept.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call