Abstract

The production potential of highly deviated wells cannot be fully realized by conventional acid fracturing, as it can only generate a single fracture. To fully enhance the productivity of highly deviated wells, it is necessary to initiate multiple fractures along a prolonged well section to ensure the optimal number of fractures, thereby maximizing the economic returns post-stimulation. Thus, the number of fractures is a crucial parameter in the acid fracturing design of highly deviated wells. Considering factors such as the random distribution of natural fractures within the reservoir and interference between fractures during production, and, based on the oil–water two-phase flow equation, a three-dimensional reservoir–fracture production coupling model and its seepage difference model are established to simulate the production performance of highly deviated wells under varying conditions, including the number of fractures, fracture spacing, and conductivity parameters. A numerical model for the number of acid fracturing fractures in highly deviated wells is also established, in conjunction with an economic evaluation model. The simulation results indicate that the daily oil production of highly deviated wells increases with the increase in fracture number, fracture conductivity, fracture length, and reservoir permeability. However, over time, the daily oil production gradually decreases. Similarly, the cumulative production also increases with these parameters, but shows a downward trend over time. By conducting numerical simulations to evaluate the productivity and economy of highly deviated wells post-acid fracturing, it is determined that the optimal number of fractures to achieve maximum efficiency is six. The reliability of this result is confirmed by the pressure distribution cloud map of the formation after acid fracturing in highly deviated wells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call