Abstract

BackgroundAnalysis and extraction of plant matrices are important processes for the development, modernization, and quality control of herbal formulations. Response surface methodology is a collection of statistical and mathematical techniques that are used to optimize the range of variables in various experimental processes to reduce the number of experimental runs, cost , and time, compared to other methods.MethodsResponse surface methodology was applied for optimizing reflux extraction conditions for achieving high 6-gingerol and 6-shogaol contents, and high antioxidant activity in Zingiber officinale var. rubrum Theilade . The two-factor central composite design was employed to determine the effects of two independent variables, namely extraction temperature (X1:50–80 °C) and time (X2:2–4 h), on the properties of the extracts. The 6-gingerol and 6-shogaol contents were measured using ultra-performance liquid chromatography. The antioxidant activity of the rhizome extracts was determined by means of the 1,1-diphenyl-2-picrylhydrazyl assay. Anticancer activity of optimized extracts against HeLa cancer cell lines was measured using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.ResultsIncreasing the extraction temperature and time induced significant response of the variables. The optimum extraction condition for all responses was at 76.9 °C for 3.4 h. Under the optimum condition, the corresponding predicted response values for 6-gingerol, 6-shogaol, and the antioxidant activity were 2.89 mg/g DW, 1.85 mg/g DW, and 84.3 %, respectively. 6-gingerol and 6-shogaol were extracted under optimized condition to check the viability of the models. The values were 2.92 and 1.88 mg/g DW, and 84.0 % for 6-gingerol, 6-shogaol, and the antioxidant activity respectively. The experimental values agreed with those predicted, thus indicating suitability of the models employed and the success of RSM in optimizing the extraction condition. With optimizing of reflux extraction anticancer activity of extracts against HeLa cancer cells enhanced about 16.8 %. The half inhibition concentration (IC50) value of optimized and unoptimized extract was found at concentration of 20.9 and 38.4 μg/mL respectively. Optimized extract showed more distinct anticancer activities against HeLa cancer cells in a concentration of 40 μg/mL (P < 0.01) without toxicity to normal cells.ConclusionsThe results indicated that the pharmaceutical quality of ginger could be improved significantly by optimizing of extraction process using response surface methodology.

Highlights

  • Analysis and extraction of plant matrices are important processes for the development, modernization, and quality control of herbal formulations

  • Response surface methodology (RSM) is a collection of statistical and mathematical technique that used to optimize the range of variables in various experimental processes with reducing the number of experimental runs, cost and time compared to other methods

  • The aim of this study was to optimize the conditions for the extraction of a Malaysian ginger variety Zingiber officinale var. rubrum Theilade namely Halia bara to achieve high 6-gingerol and 6-shogaol contents and high antioxidant and anticancer capacity by using response surface methodology with a central composite design (CCD)

Read more

Summary

Introduction

Analysis and extraction of plant matrices are important processes for the development, modernization, and quality control of herbal formulations. Response surface methodology is a collection of statistical and mathematical techniques that are used to optimize the range of variables in various experimental processes to reduce the number of experimental runs, cost , and time, compared to other methods. 6-gingerol was reported as the most abundant bioactive compound in ginger with various pharmacological effects including antioxidant, analgesic, anti-inflammatory and antipyretic properties [5,6,7,8]. Response surface methodology (RSM) is a collection of statistical and mathematical technique that used to optimize the range of variables in various experimental processes with reducing the number of experimental runs, cost and time compared to other methods. To the best of our knowledge, no other studies have been undertaken to optimize extraction condition of 6-gingerol and 6-shogaol from Z.officinale.var.rubrum Theilade. The aim of this study was to optimize the conditions for the extraction of a Malaysian ginger variety Zingiber officinale var. rubrum Theilade namely Halia bara to achieve high 6-gingerol and 6-shogaol contents and high antioxidant and anticancer capacity by using response surface methodology with a central composite design (CCD)

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call