Abstract

Power flow reliability, voltage security and transmission congestion management are paramount operational issues in a power system. Flexible AC transmission system (FACTS) controllers are suitable technologies that can provide compensation and dynamic control of power system transmission parameters to enhance effective performance and reliability. The interline power flow controller (IPFC), if optimally placed, can regulate the impedance of multiple lines to improve active power transfer capacity and voltage profile. This study examines the performance of IPFCs for voltage enhancement by suppressing fluctuation. A modified Newton–Raphson load flow problem with an incorporated IPFC variable has been formulated with the objective to improve voltage stability and maintain active power flow. The effectiveness of the proposed method was tested on the Nigerian 41 bus transmission network. The obtained result of the system with an IPFC placed at the weakest bus of the network was compared with Newton–Raphson load flow analysis of the same network without an IPFC. The results of load flow analysis for Case 1 (the system without an IPFC) showed that the transmission network without an IPFC had a real power loss of 4.699488 p.u., and reactive power loss of 4.467413 p.u., whereas the integration of an IPFC to the power flow formation in Case 2 resulted in the reduction in the transmission network’s overall losses to 0.55297 p.u. and −38.3329 p.u. The modified method proves effective as the power system network with an IPFC returns a more stable voltage profile and improves active power flow. In addition, this method, similar to all other mathematical optimization approaches, returns a strong accurate result but may be a drawback in terms of longer computational time compared with metaheuristic methods which are preferred for a larger network system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call