Abstract
Background: Vancomycin therapeutic monitoring guidelines were revised in March 2020, and a population pharmacokinetics-guided Bayesian approach to estimate the 24-hour area under the concentration–time curve to the minimum inhibitory concentration ratio has since been recommended instead of trough concentrations. To comply with these latest guidelines, we evaluated published population pharmacokinetic models of vancomycin using an external dataset of neonatal patients and selected the most predictive model to develop a new initial dosing regimen. Methods: The models were identified from the literature and tested using a retrospective dataset of Canadian neonates. Their predictive performance was assessed using prediction- and simulation-based diagnostics. Monte Carlo simulations were performed to develop the initial dosing regimen with the highest probability of therapeutic target attainment. Results: A total of 144 vancomycin concentrations were derived from 63 neonates in the external population. Five of the 28 models retained for evaluation were found predictive with a bias of 15% and an imprecision of 30%. Overall, the Grimsley and Thomson model performed best, with a bias of −0.8% and an imprecision of 20.9%; therefore, it was applied in the simulations. A novel initial dosing regimen of 15 mg/kg, followed by 11 mg/kg every 8 hours should favor therapeutic target attainment. Conclusions: A predictive population pharmacokinetic model of vancomycin was identified after an external evaluation and used to recommend a novel initial dosing regimen. The implementation of these model-based tools may guide physicians in selecting the most appropriate initial vancomycin dose, leading to improved clinical outcomes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have