Abstract

Edible flowers, including roselle, contain a varied composition of phenolic compounds that may inhibit the oxidative stress mechanism. Roselle-based tisane with appealing sensory properties is commonly consumed worldwide. However, the conventional hot-brew method may ruin the stability of thermolabile phenolic compounds during the tisane preparation. Hence, this study aimed to develop a new alternative brewing method linked with the new cold-brew method, which involves a lower temperature and applying ultrasound to maximize the extraction of phenolic compounds and to avoid degradation during the tisane preparation. The brewing factors, including particle size (10, 20, 30 mesh), temperature (4, 15, 26 °C), time (10, 20, 30 min), and ultrasound amplitude (20, 60, 100% of the maximum amplitude) have been optimized simultaneously using Box–Behnken design in conjunction with response surface methodology. Seven major phenolic compounds were identified by HPLC-DAD and classified into hydroxycinnamic acid derivatives (HCA) and flavonoids. The optimum extraction condition to reach the highest level of the studied phenolic compounds was set to brew roselle with particle size of 30 ± 3.25 mesh at 26 ± 1.32 °C for 18 ± 2.00 min applying 78 ± 5.64% ultrasound amplitude. This method successfully extracted almost all HCA and flavonoid during the first cycle with less than 10% CV and provided higher antioxidant activity in terms of DPPH (IC50 9.77 ± 0.01 µg mL−1), ABTS (IC50 8.05 ± 0.02 µg mL−1), and FRAP (IC50 10.34 ± 0.03 µg mL−1) than the roselle tisane prepared using the conventional method. Additionally, the resulting cold-brew product was stable for up to five days of storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call