Abstract

Sustainable energy based hybrid microgrids are advantageous in meeting constantly increasing energy demands. Conversely, the intermittent nature of renewable sources represents the main challenge to achieving a reliable supply. Hence, load frequency regulation by adjusting the amount of power shared between subsystems is considered as a promising research field. Therefore, this paper presents a new stratagem for frequency regulation by developing a novel two stage integral-proportional-derivative with one plus integral (IPD-(1+I)) controller for multi sources islanded microgrid system (MS-IμGS). The proposed stratagem has been tested in an MS-IμGS comprising of a wind turbine, parabolic trough, biodiesel generators, solid-oxide fuel cell, and electric water heater. The proposed model under different scenarios is simulated in MATLAB environment considering the real-time recorded wind data. A recently developed sine-cosine algorithmic technique (SCA) has been leveraged for optimal regulation of frequency in the considered microgrid. To identify the supremacy of the proposed technique, comparative studies with other classical controllers with different optimization techniques have been performed. From the comparison, it is clearly evident that, SCA-(IPD-(1+I)) controller gives better performance over other considered stratagems in terms of various time domain specific parameters, such as peak deviations (overshoot, undershoot) and settling time. Finally, the robustness of the proposed stratagem is evaluated by conducting sensitivity analysis under ±30% parametric variations and +30% load demand. The lab tests results validate the operation of the proposed system and show that it can be used to regulate the frequency in stand-alone microgrids with a high penetration of renewable energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.