Abstract

This paper investigates the optimization of the solution heat treatment parameters of the rheo-high pressure die cast (R-HPDC) 2139 aluminium alloy. Differential Scanning Calorimetry (DSC) and optical microscopy were used to investigate the incidence of incipient melting and therefore determine suitable solution heat treatment temperatures. A three-step solution heat treatment where the alloy was heat treated from 400°C to 513°C using controlled heating conditions and held at 513°C for 2 hours and finally heated up from 513°C to 525°C and held there for 16 hours was done. R-HPDC is known to produce surface liquid segregation and when processing the alloys these areas are most prone to incipient melting. The applicability of a single (525°C for 16h) and three-step solution heat treatments on the R-HPDC 2139 aluminium alloy was also investigated. A single-step solution heat treatment results in incipient melting, whereas this is mostly eliminated using the three-step solution heat treatment. However, a high volume fraction of undissolved phases remain in the liquid segregated areas, even after the three-step solution heat treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call