Abstract
Developing an effective method for isolating bacterial genetic material from plants is a relatively challenging task and often does not yield adequately prepared material for further analyses. Previous studies often overlook connections, primarily focusing on laboratory investigations. With advancements in high-throughput sequencing techniques, we can now revisit and delve deeper into these interactions. Our study focuses on the initial phase of these investigations: genetic material isolation. Extracting bacterial DNA from aboveground plant parts, known as the phyllosphere, poses a significant challenge due to plant-derived contaminants. Existing isolation protocols frequently yield inconsistent results, necessitating continuous refinement and optimization. In our study, we developed an effective isolation protocol employing mechanical-chemical lysis, sonication, and membrane filtration. This approach yielded high-quality DNA at a concentration of 38.08 ng/µL, suitable for advanced sequencing applications. Our results underscore the effectiveness and necessity of these methods for conducting comprehensive microbiological analyses. Furthermore, our research not only lays the groundwork for further studies on lettuce microbiota, but also highlights the potential for utilizing our developed protocol in investigating other plants and their microbiomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.