Abstract
With the continuous development of hydrogen storage systems, power-to-gas (P2G) and combined heat and power (CHP), the coupling between electricity–heat–hydrogen–gas has been promoted and energy conversion equipment has been transformed from an independent operation with low energy utilization efficiency to a joint operation with high efficiency. This study proposes a low-carbon optimization strategy for a multi-energy coupled IES containing hydrogen energy storage operating jointly with a two-stage P2G adjustable thermoelectric ratio CHP. Firstly, the hydrogen energy storage system is analyzed to enhance the wind power consumption ability of the system by dynamically absorbing and releasing energy at the right time through electricity–hydrogen coupling. Then, the two-stage P2G operation process is refined and combined with the CHP operation with an adjustable thermoelectric ratio to further improve the low-carbon and economic performance of the system. Finally, multiple scenarios are set up, and the comparative analysis shows that the addition of a hydrogen storage system can increase the wind power consumption capacity of the system by 4.6%; considering the adjustable thermoelectric ratio CHP and the two-stage P2G, the system emissions reduction can be 5.97% and 23.07%, respectively, and the total cost of operation can be reduced by 7.5% and 14.5%, respectively.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have