Abstract

The growth of undoped GaSb epilayers on GaAs (0 0 1) substrates with 2° offcut towards 〈1 1 0〉, by molecular beam epitaxy system (MBE) at low growth temperature is reported. The strain due to the lattice mismatch of 7.78% is relieved spontaneously at the interface by using interfacial misfit array (IMF) growth mode. Three approaches of this technique are investigated. The difference consists in the steps after the growth of GaAs buffer layer. These steps are the desorption of arsenic from the GaAs surface, and the cooling down to the growth temperature, under or without antimony flux. The X-ray analysis and the transmission electron microscopy point out that desorption of arsenic followed by the substrate temperature decreasing under no group V flux leads to the best structural and crystallographic properties in the GaSb layer. It is found that the 2 µm-thick GaSb is 99.8% relaxed, and that the strain is relieved by the formation of a periodic array of 90° pure-edge dislocations along the [1 1 0] direction with a periodicity of 5.6 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.