Abstract

Tissue damage during endoscopic treatment of urethral and ureteral strictures may result in stricture recurrence. The Erbium:YAG laser ablates soft tissues with minimal peripheral damage and may be a promising alternative to cold knife and Holmium:YAG laser for precise incision of urological strictures. Optimization of the Er:YAG laser was conducted using ex vivo porcine ureteral and canine urethral tissues. Preliminary in vivo studies were also performed in a laparoscopic porcine ureteral model with exposed ureter. Laser radiation with a wavelength of 2.94 microm, pulse lengths of 8, 70, and 220 microseconds, output energies of 2-35 mJ, fluences of 1-25 J/cm2, and pulse repetition rates of 5-30 Hz, was delivered through 250-microm and 425-microm core germanium oxide optical fibers in direct contact with tissue. Ex vivo perforation thresholds measured 2-4 J/cm2, with ablation rates of 50 microm/pulse at fluences of 6-11 J/cm2. In vivo perforation thresholds were approximately 1.8 J/cm2, with the ureter perforated in less than 20 pulses at fluences greater than 3.6 J/cm2. Peripheral thermal damage in tissue decreased from 30 to 60 microm to 10-20 microm as the laser pulse length decreased from 220 to 8 microseconds. Mechanical tissue damage was observed at the 8 microseconds pulse duration. The Er:YAG laser, operating at a pulse duration of approximately 70 microseconds, a fluence greater than approximately 4 J/cm2, and a repetition rate less than 20 Hz, is capable of rapidly incising urethral and ureteral tissues with minimal thermal and mechanical side-effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call