Abstract

The epoxidation of rapeseed oil (RO) with peracetic acid generated in situ by the reaction of 30 wt % hydrogen peroxide and acetic acid has been studied. The optimization studies were performed by the application of statistical experimental design methodology with the utilization of a rotatable uniform design. Four parameters for the RO epoxidation process were studied: temperature, molar ratio of hydrogen peroxide to rapeseed oil, molar ratio of acetic acid to rapeseed oil, and reaction time. The output of the process was described by five response functions: iodine number, epoxy number, conversion, yield, and the selectivity. The highest levels of all response functions, with the exception of the selectivity, were predicted for the same parameter values: temperature 65 °C, molar ratio of hydrogen peroxide to RO 11.1:1 mol/mol, molar ratio of acetic acid to RO 1.89:1 mol/mol, and the reaction time 6 h. In a confirmatory experiment, these conditions provided the epoxidized rapeseed oil with the yield of 59.3 mol %, and 83.7 mol % conversion of oil. The epoxy number of the product amounted to 0.1862 mol/100 g, whereas the iodine number was 0.0513 mol/100 g. The highest values of selectivity were predicted to require the use of different conditions: 51.5 °C, 9.7 equiv of H2O2, 0.63 equiv of AA, 6 h. These conditions gave the product with 99.2% selectivity. Epoxidized rapeseed oil is of high commercial importance as a plasticizer and stabilizer for plastics, ingredient of lubricants, polyol in manufacture of polyurethanes, and an intermediate for the synthesis of surfactants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.