Abstract

Linear discriminant analysis (LDA) has long been used to derive data-driven temporal filters in order to improve the robustness of speech features used in speech recognition. In this paper, we proposed the use of new optimization criteria of principal component analysis (PCA) and the minimum classification error (MCE) for constructing the temporal filters. Detailed comparative performance analysis for the features obtained using the three optimization criteria, LDA, PCA, and MCE, with various types of noise and a wide range of SNR values is presented. It was found that the new criteria lead to superior performance over the original MFCC features, just as LDA-derived filters can. In addition, the newly proposed MCE-derived filters can often do better than the LDA-derived filters. Also, it is shown that further performance improvements are achievable if any of these LDA/PCA/MCE-derived filters are integrated with the conventional approach of cepstral mean and variance normalization (CMVN). The performance improvements obtained in recognition experiments are further supported by analyses conducted using two different distance measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call