Abstract
Purpose. The establishment of future retinal pigment epithelium (RPE) replacement therapy is partly dependent on the availability of tissue-engineered RPE cells, which may be enhanced by the development of suitable storage methods for RPE. This study investigates the effect of different storage temperatures on the viability, morphology, and phenotype of cultured RPE. Methods. ARPE-19 cells were cultured under standard conditions and stored in HEPES-buffered MEM at nine temperatures (4°C, 8°C, 12°C, 16°C, 20°C, 24°C, 28°C, 32°C, and 37°C) for seven days. Viability and phenotype were assessed by a microplate fluorometer and epifluorescence microscopy, while morphology was analyzed by scanning electron microscopy. Results. The percentage of viable cells preserved after storage was highest in the 16°C group (48.7% ± 9.8%; P < 0.01 compared to 4°C, 8°C, and 24°C–37°C; P < 0.05 compared to 12°C). Ultrastructure was best preserved at 12°C, 16°C, and 20°C. Expression of actin, ZO-1, PCNA, caspase-3, and RPE65 was maintained after storage at 16°C compared to control cells that were not stored. Conclusion. Out of nine temperatures tested between 4°C and 37°C, storage at 12°C, 16°C, and 20°C was optimal for maintenance of RPE cell viability, morphology, and phenotype. The preservation of RPE cells is critically dependent on storage temperature.
Highlights
Dysfunction and loss of retinal pigment epithelium (RPE) are major pathological changes in retinal degenerative diseases such as age-related macular degeneration (AMD) and Stargardt disease
The establishment of future retinal pigment epithelium (RPE) replacement therapy is partly dependent on the availability of tissue-engineered RPE cells, which may be enhanced by the development of suitable storage methods for RPE
This study investigates the effect of different storage temperatures on the viability, morphology, and phenotype of cultured RPE
Summary
Dysfunction and loss of retinal pigment epithelium (RPE) are major pathological changes in retinal degenerative diseases such as age-related macular degeneration (AMD) and Stargardt disease. RPE cells have been shown to be good candidates for cell replacement therapy for these diseases [1,2,3,4,5,6,7]. The development of storage techniques has simplified surgery logistics, enabled quality control and tissue transportation, and provided worldwide tissue availability. With the advancement of RPE cell replacement therapy, and with 20–25 million known sufferers from AMD worldwide [17], a great need for improved storage methods for cultured RPE is likely to emerge. Due to strict regulatory demands [18, 19], the development of a suitable storage method will be essential to enable the transportation of viable cell constructs from centralized laboratories to operating theatres [18]. A short-term storage method would be sufficient for this purpose, but no such protocol is available, and the optimal temperature for the short-term storage of RPE cells has not been established
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have