Abstract
The SM2 public key cryptographic algorithm is widely utilized for secure communication and data protection due to its strong security and compact key size. However, the intensive large integer operations it requires pose significant computational challenges, which can limit the performance of Internet of Things (IoT) terminal devices. This paper introduces an optimized implementation of the SM2 algorithm specifically designed for IoT contexts. By segmenting large integers as polynomials within a modified Montgomery modular multiplication algorithm, the proposed method enables parallel modular multiplication and reduction, thus addressing storage constraints and reducing computational redundancy. For scalar multiplication, a Co-Z Montgomery ladder algorithm is employed alongside Single Instruction Multiple Data (SIMD) instructions to enhance parallelism, significantly improving efficiency. Experimental results demonstrate that the proposed scheme reduces the computation time for the SM2 algorithm’s digital signature by approximately 20% and enhances data encryption and decryption efficiency by about 15% over existing methods, marking a substantial performance gain for IoT applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have