Abstract

Wire and arc-based direct energy deposition (wire and arc DED) is a promising metallic additively manufacturing (MAM) technology to fabricate large-size metallic components. Among high-strength-low-alloy steels used in wire and arc DED processes, ER110S-G is a commonly used material. However, previous studies have often relied on process parameters recommended by suppliers for conventional welding methods. This study aims to predict the optimum processing parameters for the manufacture of ER110S-G steel by a wire and arc DED process based on experiment and multi-attribute optimization algorithms. The experiment was designed using the full factorial method with the input variables ( U– voltage, I– current, and v– traveling speed) while considering three attributes of single tracks ( STW– single track width, STH– single track height, and LMP– length of melting pool). To find the optimal processing variables, MONS-MFO (Multi-Objective Non-Sorted Moth Flame) was utilized. The outcomes reveal that the developed predictive models of attributes feature a high accurate level ( R2 = 98.11%, 98.38%, and 98.07% for STW, STH, and LMP, respectively). The optimal parameters obtained by MONS-MFO & TOPSIS were I = 159.4 A, v = 0.3 m/min, and U = 21.4 V allow fabricating single tracks with smooth and regular shape and a s-shaped thin-wall component with regular shape and height. Moreover, no spatters generated with the optimal parameters, demonstrating their suitability and efficiency for the printing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.