Abstract

Emitter surface passivation by low temperature plasma enhanced chemical vapor deposition (PECVD) silicon nitride is investigated and optimized in this paper. We have found that the saturation current density of a 90±10 μ/sq phosphorus diffused emitter with Ns ≈3 x 1019 and Xj ≈0.3 µm can be lowered by a factor of eight by appropriate PECVD silicon nitride deposition and photoassisted anneal. PECVD silicon nitride deposition alone reduces the emitter saturation density (Joe) by about a factor of two to three, and a subsequent photoanneal at temperatures ≥350°C reduces Joe by another factor of three. In spite of the larger flat band shift for direct PECVD silicon nitride coating, the silicon nitride induced surface passivation is found to be about a factor of two inferior to the thermal oxide plus PECVD silicon nitride passivation due to higher interface state density at the SiN/SiO2 interface compared to SiO2/Si interface. A combination of statistical experimental design and neural network modeling is used to show quantitatively that lower radio frequency power, higher substrate temperature, and higher reactor pressure during the PECVD deposition can reduce the Joe of the silicon nitride coated emitter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call