Abstract

Constellation satellites are required to perform orbital transfer maneuvers. Orbital transfer maneuvers, as opposed to orbital correction maneuvers, are seldom performed but require a substantial amount of propellant for each maneuver. The maneuvers are performed in order to obtain the desired constellation configuration that satisfies the coverage requirements. In most cases, the single-satellite position is immaterial; rather the relative position between constellation multiple-satellites is to be controlled. This work deals with the solution to the coupled optimization problem of multiple-satellite orbital transfer. The studied problem involves a coupled formulation of the terminal conditions of the satellites. The solution was achieved using functional optimization techniques by a combined algorithm. The combined algorithm is based on the First Order Gradient and Neighboring-Extremals Algorithms. An orbital transfer optimization tool was developed. This software has the ability to consider multiple satellites with coupled terminal conditions. A solution to the multiple-satellite orbital transfer optimization problem is presented. A comparison of this solution to the uncoupled case is presented in order to review the benefits of using this approach. It is concluded that the coupled transfer maneuver solution approach is more computationally efficient and more accurate. Numerical solutions for a number of representative cases are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.