Abstract
The objective of this work is to investigate the influences of three machining factors (burnishing speed V, feed rate f, and depth of penetration a) on the improved rate of arithmetic average roughness Δ Ra, improved rate of maximum height roughness Δ Ry, and improved rates of surface hardness Δ SH. The internal roller burnishing experiments were conducted with the aid of the computer numerical control machining center and Box–Behnken experimental design. The Kriging models were used to render the highly nonlinear relationships between inputs and outputs. An integrative approach combining a Non-dominated Sorting Genetic Algorithm II and Technique for Order Preference by Similarity to Ideal Solution was adopted to generate a set of feasible optimal solutions and determine the best machining conditions. The scanning electron microscopy images were depicted to investigate the surface morphology at the different conditions. The X-ray diffraction was applied to measure the compressive stresses at the external surface. The results showed that the predicted values of the objectives have good agreement with the experimental ones. High surface quality is characterized by an improved average roughness of 95.80%, an enhancement in the maximum roughness of 91.98%, and an improvement in surface hardness of 45.44%, compared to pre-machined surfaces. The selection of optimum process parameters could help the burnishing operators to save the machining costs and time. The combination of Kriging model, Non-dominated Sorting Genetic Algorithm II, and Technique for Order Preference by Similarity to Ideal Solution is considered as an intelligent approach for modeling and optimization of burnishing processes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have