Abstract

Pressure swing adsorption (PSA) is an important technology for mixture gas separation and purification. In this work, a dynamic model for a layered adsorption bed packed with activated carbon and zeolite 5A was developed and validated to study the PSA process. The model was validated by calculating breakthrough curves of a five-component gas mixture (H2/CH4/CO/N2/CO2 = 56.4/26.6/8.4/5.5/3.1 mol%) and comparing the results with available experimental data. The purification performance of six-step layered bed PSA cycle was studied using the model. In order to optimize the cycle, the Box-Behnken design (BBD) method was used, as implemented in Design Expert™. The parametric study showed that, for adsorption step durations ranging from 160 to 200 s, as the adsorption time increased, the purity decreased, whereas the recovery and productivity increased. During the pressure equalization step, the purity increased as the pressure equalization time increased, but the recovery and productivity decreased for step durations ranging from 10 to 30 s. As the P/F ratio (hydrogen used in purge step to hydrogen fed in adsorption step) increased from 0.05 to 0.125, the purity increased, whereas the recovery and productivity decreased. The optimization of the layered bed PSA process by the BBD method was then performed. In addition to the adsorption time, the pressure equalization time and the P/F ratio were considered as independent optimization parameters. Quadratic regression equations were then obtained for three responses of the system, namely purity, recovery, and productivity. When purity is set as the main performance indicator, the following values were obtained for the optimization parameters: an adsorption time of 168 s, a pressure equalization time of 14 s, and a P/F ratio of 0.11. Under those conditions, the system achieved a purity of 99.99%, a recovery of 57.76%, and a productivity of 6.41 mol/(kg·h).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call