Abstract
Recent advances in multi-electrode recording and imaging techniques have made it possible to observe the activity of large populations of neurons. However, to take full advantage of these techniques, new methods for the analysis of population responses must be developed. In this paper, we present an algorithm for optimizing population decoding with distance metrics. To demonstrate the utility of this algorithm under experimental conditions, we evaluate its performance in decoding both population spike trains and calcium signals with different correlation structures. Our results demonstrate that the optimized decoder outperforms other simple population decoders and suggest that optimization could serve as a tool for quantifying the potential contribution of individual cells to the population code.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.