Abstract

Nanophotonic light trapping offers a promising approach to increased efficiency in thin-film organic photovoltaics. In this paper, an extension of the direct-binary-search algorithm was adopted to optimize dielectric nanophotonic structures for increasing power output of ultra-thin organic solar cells. The optimized devices were comprised of an absorber layer sandwiched between two patterned, transparent, conducting cladding layers. Light trapping in such devices with an absorber thickness of only 10nm increases power output by a factor of 16 when compared to a flat reference device. We further show that even under oblique illumination with angles ranging from 0 to 60 degrees, such a device could produce over 7 times more power compared to a flat reference device. Finally, we also performed a spectral and parametric analysis of the optimized design, and show that the increase is primarily due to guided-mode resonances. Our simulations indicate that this new design approach has the potential to significantly increase the performance of ultra-thin solar cells in realistic scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call