Abstract
Arrays of high-index dielectric nanoparticles supporting both electrical and magnetic resonances have gained increasing attention for their excellent light-trapping (LT) effects, thus greatly improving the performance of ultrathin solar cells. This work explores front-located, high-index dielectric subwavelength nanosphere arrays as an efficient and broadband LT structure patterned on top of an ultrathin perovskite solar cell (PSC) for a greatly enhanced absorption. Combined strong light scattering and anti-reflection properties achieved by optimized geometrical parameters of the LT structure lead to a broadband absorption enhancement in the ultrathin thickness of a photoactive layer (100 nm) yielding the short-circuit current density (Jsc) of 18.7 mA/cm2, which is 31.7% higher than that of a planar counterpart. Moreover, effects of the LT structure on far-field radiation patterns, scattering cross-sections, multipoles' contributions, and asymmetry parameters along with the incidence angle and polarization dependence are investigated. The present strategy could be applied to diverse applications, such as other ultrathin or semitransparent solar cells, absorbers and photodetectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.