Abstract
In this work, the parameters of laser cladding were optimized to obtain a high-quality single track. Nickel aluminide powder (Ni3Al) – PN85Yu15 was used as the surfacing material. 60 samples were obtained, deposited at various pa rameters of power, scanning speed, position of the focus of the laser beam relative to the surface of the powder layer. The geometric characteristics of the obtained single tracks were measured, graphs of their dependence on the scanning speed were plotted. It was found that the sizes of single tracks decrease with increasing speed. An increase in the power of laser radiation leads to an increase in width and height of the track, as well as the depth of penetration of the substrate. The dependence of the geometric characteristics of the tracks on the temperature of the melting pool has been investigated. The microhardness of the obtained samples was also measured, and a weakly expressed dependence of the microhardness on the laser scanning speed was found. It was found that the microhardness of the obtained samples correlates with the amount of energy imparted to the powder layer and the temperature of the melting pool. It was also found that the set of experimental data is described in generalized spatial and energy coordinates by a linear dependence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.